BMath-Differential Geometry-II, Back paper Exam

INSTRUCTIONS: All problems carry equal weight and are compulsory. Total time 3 hours. Please use notations and terminology as in the course, use results done in the class without proving them. If you use a problem from some assignment/homework, please provide its solution.

- 1. Let M be a smooth manifold and $f, g \in C^{\infty}(M)$. Prove that d(fg) = gd(f) + fd(g). (10)
- 2. Compute $d(f^*\omega)$ where $f : \mathbb{R} \to \mathbb{R}^2$, f(x) = (-x, x) and $\omega = dy dx$. (10)
- 3. Compute the Lie algebra of the Lie group S^3 , realized as the group of norm 1 quaternions. Prove that S^3 is orientable. (5+5)
- 4. Prove that the holonomy group of the connection on S^2 inherited from the Riemannian connection on \mathbb{R}^3 is isomorphic to $SO(2, \mathbb{R})$ at any point. (10)
- 5. (i) Let M be a smooth manifold admiting an atlas consisting of exactly two charts {(U, x), (V, y)} with U ∩ V (nonempty) connected. Prove that M is orientable. Deduce that Sⁿ is orientable for n ≥ 2.
 (ii) Prove that S¹ is orientable. (4+1+5)